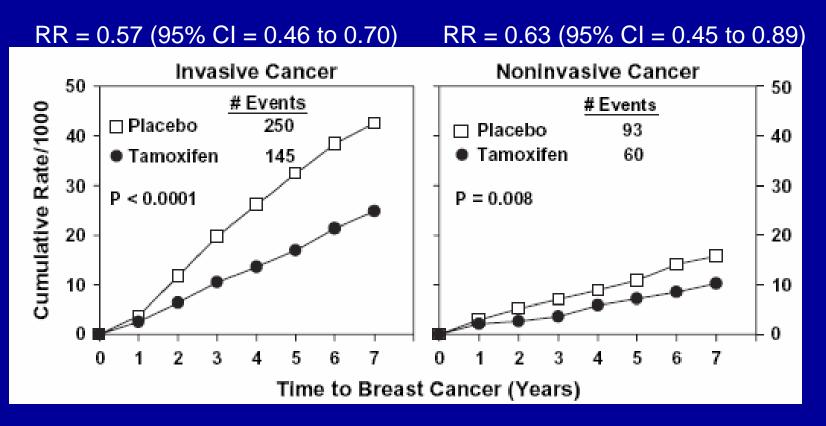
Breast Cancer Prevention

Where do we go from here?

Jennifer Eng-Wong, MD MPH

Lombardi Comprehensive Cancer Center Georgetown University Washington DC October 6, 2011

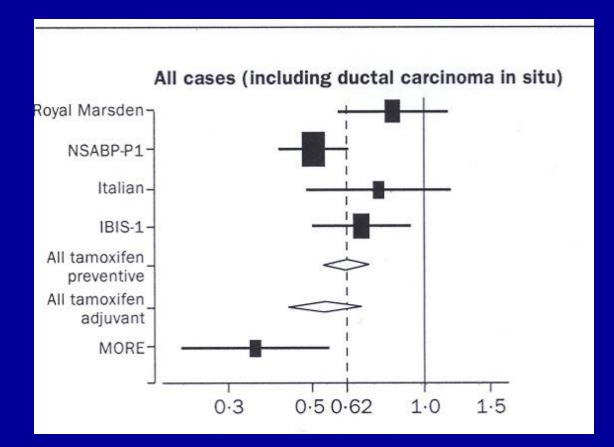
 Endocrine agents for breast cancer prevention


• Biomarkers

Current clinical trials

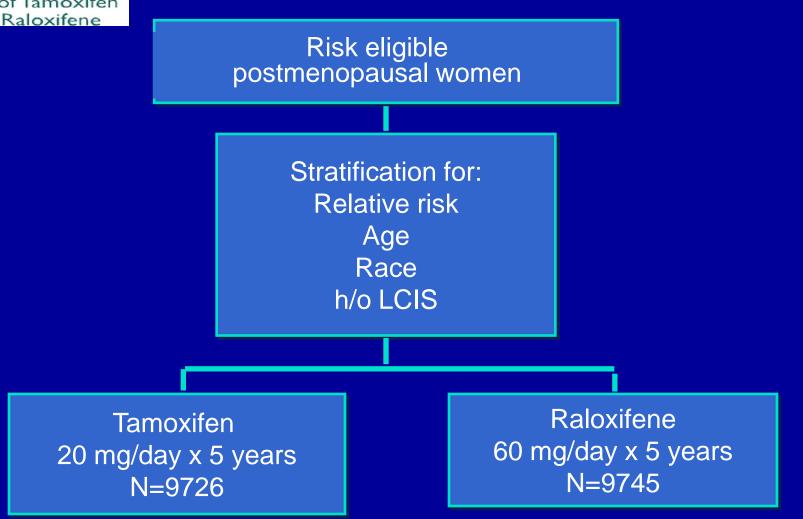
Proven agents for breast cancer prevention

- Selective estrogen receptor modulators
 - Tamoxifen
 - Raloxifene
- Aromatase Inhibitor
 - Exemestane
- Reduce the risk of developing invasive and non-invasive breast cancer
- Side effect profiles differ


NSABP-P1: Tamoxifen vs. placebo

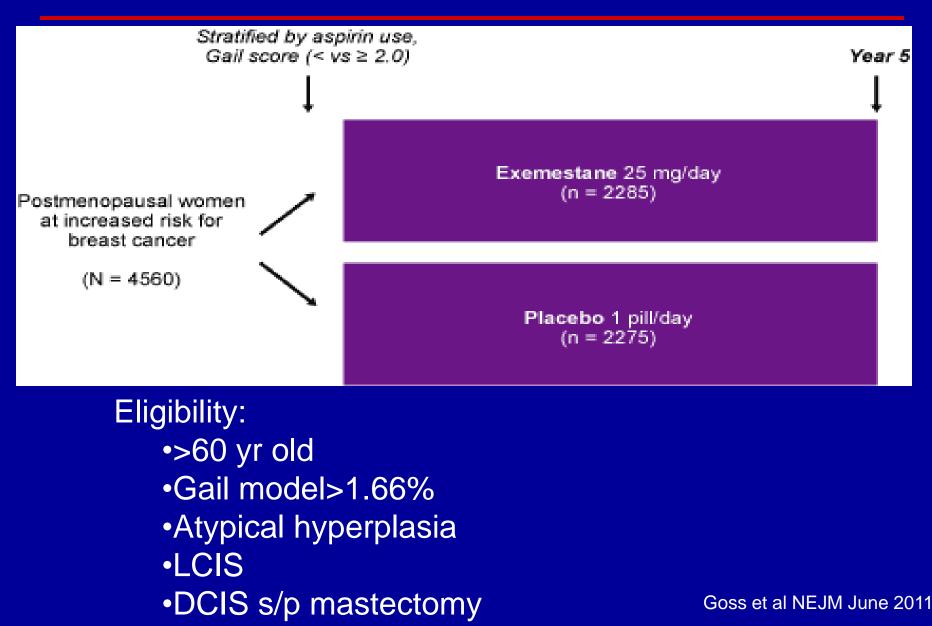
ER+ RR = 0.38 (0.28-0.50)ER- RR = 1.31 (0.86-2.01)

Fisher, B et al., JNCI 2005, 97: 1652-1662

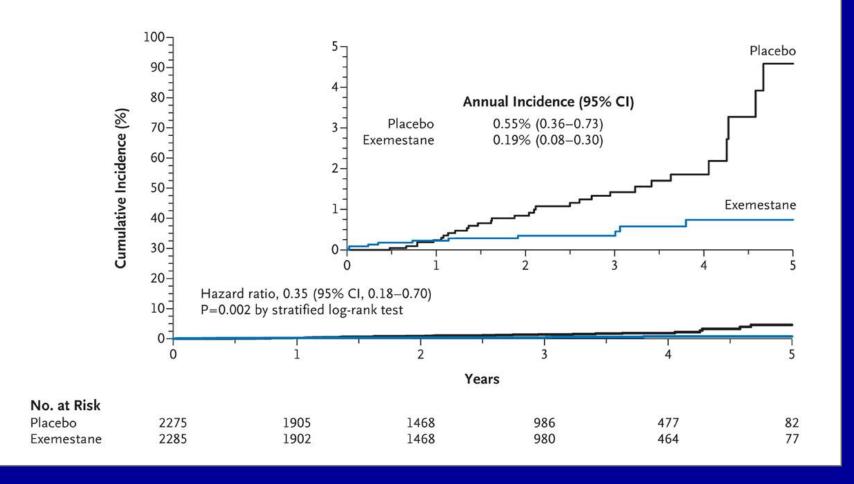

Tamoxifen Breast Cancer Prevention Studies

Cuzick et al, Lancet 2003

NSABP Protocol P-2


Events on Tamoxifen and Raloxifene in Women at risk for breast cancer

	Tamoxifen	Raloxifene	Risk	
	Annual event rate/1000	Annual event rate/1000	Ratio	95% CI
Invasive breast cancer	4.04	5.02	1.24	1.05,1.47
Non-invasive breast				0.95,
cancer	1.83	2.23	1.22	1.59
Thrombo-embolic				0.54,
events	1.93	1.38	0.72*	0.95
				0.36,
Endometrial cancer	2.25	1.23	0.55*	0.83
				0.64,
Stroke	1.39	1.33	0.96	1.43
				0.72,
Cataracts	14.58	11.69	0.80*	0.89
				0.69,
Osteoporotic fractures	2.73	2.51	0.92	1.22


* Favors raloxifene

Vogel, V. G.et al. Cancer Prev Res 2010

NCIC MAP.3 Trial

MAP.3 Results: Incidence of Invasive Breast Cancer

Goss PE et al. N Engl J Med 2011;364:2381-2391.

MAP.3 Results: Sub-group Analyses

Subgroup	Hazard Ratio (95% CI)	P Value for Interaction
Overall	0.35 (0.18-	0.70)
Current aspirin use		0.24
Yes	• 0.12 (0.01-	0.92)
No	• 0.43 (0.21-	0.91)
Gail risk score		0.92
≤2.0%	• 0.34 (0.09-	1.27)
>2.0%	0.36 (0.16-	0.80)
Age		0.58
≥60 yr		0.73)
<60 yr	• 0.44 (0.15-	1.27)
Body-mass index		0.94
<25	• 0.35 (0.09-	1.29)
25–30	• 0.31 (0.10-	0.94)
>30	• 0.41 (0.13-	1.30)
Prior ADH, ALH, or LCIS		0.25
Yes	• 0.61 (0.20-	1.82)
No		0.64)
	0.01 0.1 1.0	
	Exemestane Better Placebo Better	

Goss PE et al. N Engl J Med 2011;364:2381-2391

MAP 3 Results: Types of breast cancer

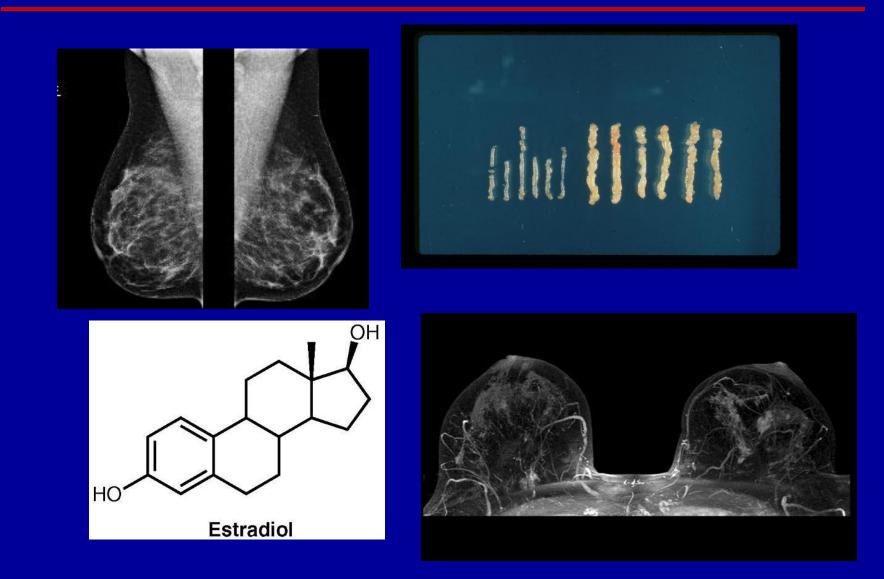
	exemestane	placebo	HR	P-value
Invasive breast				
cancer	11	32	0.35	0.002
ER+	7	27	0.27	0.001
ER-	4	5	0.80	0.74
DCIS	9	14	0.65	0.31

Goss et al NEJM June 2011

MAP.3 Results: Adverse Events (all grades)

	Exemestanc %	Placebo %	P-value
Hot flashes	40	32	<0.001
Fatigue	23	21	0.03
Arthritis	11	9	0.01
Diarrhea	5	3	0.002
New			
osteoporosis	1.7	1.3	0.39
CV events	4.7	4.9	0.78
Fracture	6.7	6.4	0.72
QOL SF 36	NA	NA	0.91

Summary Prevention Agents

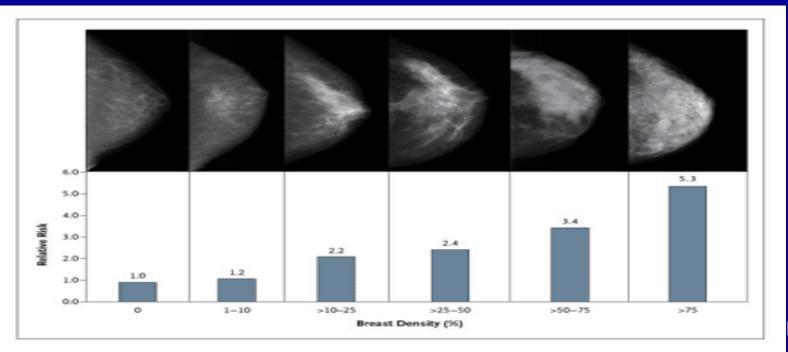

Pc	pulation	Efficacy	Usual side effects	Rare, serious side effects
tamoxifen	Pre Post	50% reduction	Hot flashesVaginal discharge	•VTE•Endometrial cancer•cataracts
raloxifene	Post	38 % reduction	•MS complaints •Dyspareunia	•VTE •NO endometrial cancer
exemestane	Post	65% reduction	ArthralgiasDecrease in BMD	•? CV events•? Fracture risk

Current Breast Cancer Prevention

- Effective prevention agents for HR+ breast cancer
- Cost-effective
- Nobody uses
 - 2005: 0.08% (51,575) of women aged 40-79 took tamoxifen
- Trials comparing tamoxifen to AI in DCIS pending (IBIS-II, NSABP B-35)
- No large scale prevention trials on the horizon
- Need to identify promising agents

Noah-Venhoucke et al, Cancer 2011 Waters et al CEBP Feb 2010

Biomarkers


Biomarkers in Chemoprevention

Surrogate endpoint biomarkers

- Factors associated with breast cancer risk
 - Differential prevalence in high vs low risk groups
 - Reflect pathophysiology of breast carcinogenesis
- Modulated by agent
- Factors associated with safety (e.g. bone mineral density)
- Cost and time efficient
 - Ensure that most effective agents move forward in larger, costly studies
- Validation requires correlation with decreased cancer incidence in phase III studies

What is mammographic density?

- Fat is lucent
- All else is dense
 Glandular tissue
 - Connective tissue (stroma)

Boyd, NEJM 200

Mammographic Density (MD)

- Risk factor for breast cancer
 odds ratio of approximately 4.0 or greater
- Increased MD correlates with risk for hormone receptor (HR) positive and HR negative breast cancer
- Important modifiers:
 - body mass index
 - menopausal status
 - age
 - exogenous endocrine agents (HRT, GnRh agonists, tamoxifen)

Cuzick et al, Br Can Res Tr 2008 Diorio et al, CEBP 2005

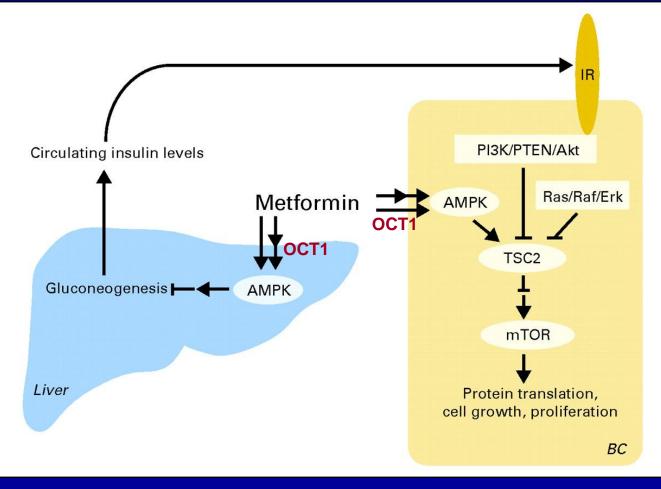
MD: validated surrogate biomarker

- IBIS -1 trial nested case control study (N=942)
 Tamoxifen vs. placebo in prevention setting
- 46% of women on tamoxifen had a 10% or greater decrease in MD at 12-18 months
 210% decrease in MD had a 63% reduction (p=0.002) in breast cancer risk
 <10% decrease no risk reduction (OR 1.13, p=0.6)
- Change in MD is useful predictor of response to tamoxifen

Interventions under study

- Metformin
- Vitamin D
- Soy
- Grapeseed extract
- Flaxseed lignans
- Omega 3 fatty acids
- Statins
- SERMS
 - Lasofoxifene
 - Low dose tamoxifen
- Lifestyle: diet and exercise interventions

Insulin and breast cancer


- DMII modest increased risk of breast cancer
- WHI : higher insulin and HOMA-1R increased risk for postmen breast ca
 - Independent of BMI and estradiol
 - HR for highest vs lowest quartile of insulin level = 1.46, 95% CI 1.00 to 2.13, P-trend = .02
- Early breast ca pts (pre and post, without DMII)
 - highest insulin levels are 2x more likely to have recurrence HR 2.0 (95% CI, 1.2 to 3.3)
 - 3x more likely to die of breast ca HR 3.1 (95% Cl, 1.7 to 5.7)

Wolf et al Lancet Oncol 2005 Gunter et al JNCI 2009 Goodwin et al JCO 2002

Metformin and breast cancer

- Improves path CR
 - Neoadjuvant treatment- women with DM on metformin (N=68) had 24% path CR versus 8% DM not on metformin (N=87)
- Safe in breast cancer patients w/o DMII
 - 1500 mg/day x 6 months, insulin decreased
 22%
 - ?ultimate 4% improvement in DFS, OS

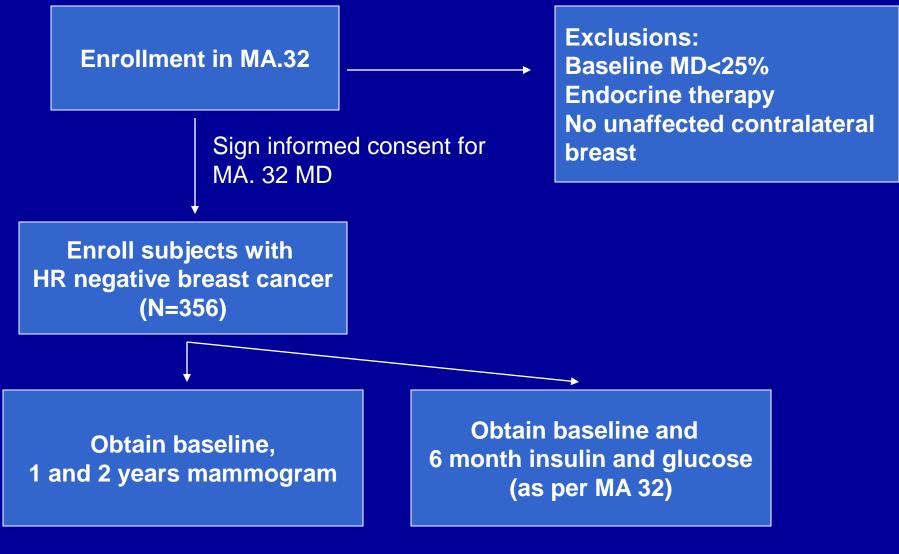
Mechanism of Metformin Action

Goodwin P J et al. J Clin Oncol 2009; 27:3271-3273

NCIC CTG MA.32 STUDY SCHEMA

T1–3*, N0-3,M0 invasive breast cancer surgically removed within 1 year Radiotherapy, chemotherapy**, endocrine therapy, trastuzumab, biologics, bisphosphonates

If pT1C, ≥ 1 adverse prognostic factor
** CXT must be completed


Metformin 850 mg po bid X 5 years (includes 4-week ramp-up of 850mg po daily)

Identical Placebo One caplet po bid X 5 years (includes 4 week ramp-up of one caplet po daily)

Primary Outcome:

Invasive cancer free survival

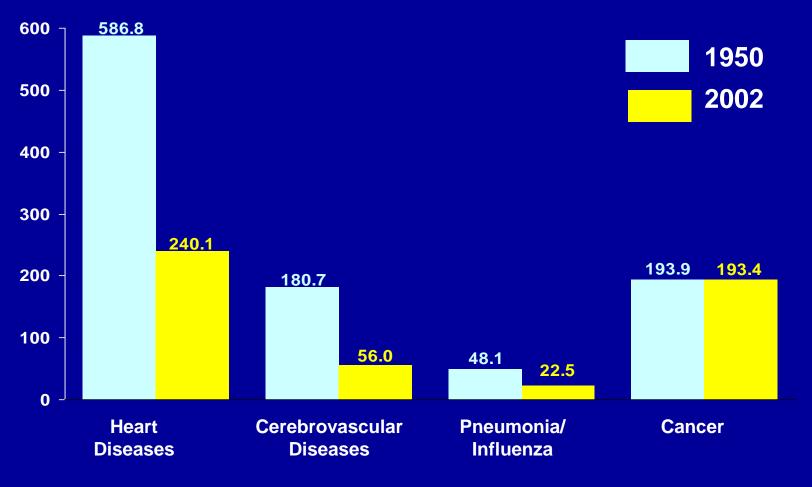
MA. 32 Mammographic Density Study

PI: J. Eng-Wong, I. Mayer

MA.32 MD Study Endpoints

- Primary endpoint:
 - Determine the change MD in contralateral breast from prior to the initiation of metformin or placebo through one year of therapy in subjects with hormone receptor negative breast cancer (i.e. not on endocrine therapy)
- Secondary endpoints:
 - To correlate baseline MD with baseline fasting plasma insulin and glucose levels.
 - Determine if MD change correlates with changes in fasting plasma insulin and glucose levels over the same time period
 - Evaluate MD change after 2 years of intervention

Summary


- Useful prevention agents for hormone receptor positive breast cancer are available and underutilized
- Promising work in identifying biomarkers of efficacy
- Validation studies key

Future Directions

- How do we improve uptake of already approve agents?
- What is the best dosing/duration of current agents?
- What will prevent hormone receptor negative breast cancer?
- Are current agents effective in BRCA ¹/₂ mutation carriers?
- What are the appropriate biomarker endpoints and what is good enough to warrant a large phase III trial?

Change in the US Death Rates* by Cause, 1950 & 2002

Rate Per 100,000

* Age-adjusted to 2000 US standard population.

Sources: 1950 Mortality Data - CDC/NCHS, NVSS, Mortality Revised. 2002 Mortality Data: US Mortality Public Use Data Tape, 2002, NCHS, Centers for Disease Control and Prevention, 2004

Metformin Activity Across Molecular Subtypes of Breast Cancer (Cell Lines in vitro)

Molecular	Proliferation	<u>Colony</u>	Cell	<u>Apoptosis</u>			<u>Molecular Cha</u>	<u>ir Changes</u>	
<u>Subtype</u>		<u>Formation</u>	<u>Cycle</u>		AMPK/ AKT	mTOR	erbB2	Other	
Luminal A	\downarrow	\downarrow	G₁ arrest (partial)	No	\downarrow	\downarrow	-	\downarrow cyclin D ₁ , E2F-1	
Luminal B	\downarrow	\downarrow	G₁ arrest (partial)	No	\downarrow	\downarrow	_	↓ cyclin D1, E2F-1	
HER2	Ļ	Ļ	G₁ arrest (partial)	No	\downarrow	\downarrow	- ↓ expression (high dose) - ↓ Tk activity (low dose)	↓ cyclin D1, E2F-1	
Triple Negative	Ļ	Ļ	G ₁ arrest (partial) S phase arrest (partial)	Yes*	Ļ		_	 ↓ cyclin D1, E inactivation of EGFR and downstream signaling ↓ TN xenograft growth in nude mice 	

* Via (1) PARP cleavage

(2) activation of intrinsic (mitochondrial integrity, caspase-9) and extrinsic (cell surface death receptors, caspase-8) pathways

Alimova IN et al.	Cell Cycle 2009; 8:909-915
Liu B et al.	Cell Cycle 2009; 8:1-10

Benefit/risk indices for tamoxifen and raloxifene chemoprevention by level of 5-year projected risk for invasive breast cancer (IBC) for white non-Hispanic women with a uterus, by age group.

	Tan	Tamoxifen <i>v</i> Placebo (with uterus)		Raloxifene <i>v</i> Placebo (with uterus)			
5-Year Projected Risk of IBC (%)	50-59	60-69	70-79	50-59	60-69	70-79	_
1.5	-133	-310	-325	21	-11	-15	
2.0	-105	-283	-298	43	11	7	Strong evidence of benefits outweighing
2.5	-78	-255	-271	65	33	29	risks
3.0	-51	-228	-244	86	55	51	Moderate evidence of
3.5	-25	-202	-217	108	76	71	benefits outweighing risks
4.0	3	-175	-190	128	97	93	Benefits do not
4.5	29	-148	-164	150	119	115	outweigh risks
5.0	56	-121	-137	172	140	136	
5.5	83	-95	-111	193	161	157	
6.0	109	-69	-84	214	183	179	
6.5	135	-42	-58	236	204	199	
7.0	162	-15	-32	256	225	221]

5-year projected risk of IBC is ≥ 1.67%. Using BCPT data and WHI baseline rates

Combining RR from BCPT and STAR using WHI baseline rates

MAP.3 Participants

	Exemestane (N=2285)	Placebo (N=2275)		
White race	93.6	93.3		
Median age	62.5	62.4		
High risk by (%):				
Gail Model	40.7 (score 2.3)	39.8 (score 2.3)		
Age <u>></u> 60	48.8	49.5		
AH, LCIS	8.1	8.3		
DCIS s/p MRM	2.5	2.5		